Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4821, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413800

RESUMEN

Abnormal mitochondria have been observed in bronchial- and alveolar epithelial cells of patients with chronic obstructive pulmonary disease (COPD). However, it is unknown if alterations in the molecular pathways regulating mitochondrial turnover (mitochondrial biogenesis vs mitophagy) are involved. Therefore, in this study, the abundance of key molecules controlling mitochondrial turnover were assessed in peripheral lung tissue from non-COPD patients (n = 6) and COPD patients (n = 11; GOLDII n = 4/11; GOLDIV n = 7/11) and in both undifferentiated and differentiated human primary bronchial epithelial cells (PBEC) from non-COPD patients and COPD patients (n = 4-7 patients/group). We observed significantly decreased transcript levels of key molecules controlling mitochondrial biogenesis (PPARGC1B, PPRC1, PPARD) in peripheral lung tissue from severe COPD patients. Interestingly, mRNA levels of the transcription factor TFAM (mitochondrial biogenesis) and BNIP3L (mitophagy) were increased in these patients. In general, these alterations were not recapitulated in undifferentiated and differentiated PBECs with the exception of decreased PPARGC1B expression in both PBEC models. Although these findings provide valuable insight in these pathways in bronchial epithelial cells and peripheral lung tissue of COPD patients, whether or not these alterations contribute to COPD pathogenesis, underlie changes in mitochondrial function or may represent compensatory mechanisms remains to be established.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Recambio Mitocondrial , Mitocondrias/metabolismo , Células Epiteliales/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
J Allergy Clin Immunol ; 152(4): 1025-1031.e2, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37364720

RESUMEN

BACKGROUND: In the isoprenoid biosynthesis pathway, mevalonate is phosphorylated in 2 subsequent enzyme steps by MVK and PMVK to generate mevalonate pyrophosphate that is further metabolized to produce sterol and nonsterol isoprenoids. Biallelic pathogenic variants in MVK result in the autoinflammatory metabolic disorder MVK deficiency. So far, however, no patients with proven PMVK deficiency due to biallelic pathogenic variants in PMVK have been reported. OBJECTIVES: This study reports the first patient with functionally confirmed PMVK deficiency, including the clinical, biochemical, and immunological consequences of a homozygous missense variant in PMVK. METHODS: The investigators performed whole-exome sequencing and functional studies in cells from a patient who, on clinical and immunological evaluation, was suspected of an autoinflammatory disease. RESULTS: The investigators identified a homozygous PMVK p.Val131Ala (NM_006556.4: c.392T>C) missense variant in the index patient. Pathogenicity was supported by genetic algorithms and modeling analysis and confirmed in patient cells that revealed markedly reduced PMVK enzyme activity due to a virtually complete absence of PMVK protein. Clinically, the patient showed various similarities as well as distinct features compared to patients with MVK deficiency and responded well to therapeutic IL-1 inhibition. CONCLUSIONS: This study reported the first patient with proven PMVK deficiency due to a homozygous missense variant in PMVK, leading to an autoinflammatory disease. PMVK deficiency expands the genetic spectrum of systemic autoinflammatory diseases, characterized by recurrent fevers, arthritis, and cytopenia and thus should be included in the differential diagnosis and genetic testing for systemic autoinflammatory diseases.

3.
Blood ; 142(9): 827-845, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37249233

RESUMEN

The nuclear factor of activated T cells (NFAT) family of transcription factors plays central roles in adaptive immunity in murine models; however, their contribution to human immune homeostasis remains poorly defined. In a multigenerational pedigree, we identified 3 patients who carry germ line biallelic missense variants in NFATC1, presenting with recurrent infections, hypogammaglobulinemia, and decreased antibody responses. The compound heterozygous NFATC1 variants identified in these patients caused decreased stability and reduced the binding of DNA and interacting proteins. We observed defects in early activation and proliferation of T and B cells from these patients, amenable to rescue upon genetic reconstitution. Stimulation induced early T-cell activation and proliferation responses were delayed but not lost, reaching that of healthy controls at day 7, indicative of an adaptive capacity of the cells. Assessment of the metabolic capacity of patient T cells revealed that NFATc1 dysfunction rendered T cells unable to engage in glycolysis after stimulation, although oxidative metabolic processes were intact. We hypothesized that NFATc1-mutant T cells could compensate for the energy deficit due to defective glycolysis by using enhanced lipid metabolism as an adaptation, leading to a delayed, but not lost, activation responses. Indeed, we observed increased 13C-labeled palmitate incorporation into citrate, indicating higher fatty acid oxidation, and we demonstrated that metformin and rosiglitazone improved patient T-cell effector functions. Collectively, enabled by our molecular dissection of the consequences of loss-of-function NFATC1 mutations and extending the role of NFATc1 in human immunity beyond receptor signaling, we provide evidence of metabolic plasticity in the context of impaired glycolysis observed in patient T cells, alleviating delayed effector responses.


Asunto(s)
Factores de Transcripción NFATC , Linfocitos T , Humanos , Ratones , Animales , Linfocitos T/metabolismo , Factores de Transcripción NFATC/metabolismo , Linfocitos T CD8-positivos , Glucólisis/genética , Mutación
4.
Redox Biol ; 47: 102160, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34624602

RESUMEN

BACKGROUND: Interleukin-1-dependent increases in glycolysis promote allergic airways disease in mice and disruption of pyruvate kinase M2 (PKM2) activity is critical herein. Glutathione-S-transferase P (GSTP) has been implicated in asthma pathogenesis and regulates the oxidation state of proteins via S-glutathionylation. We addressed whether GSTP-dependent S-glutathionylation promotes allergic airways disease by promoting glycolytic reprogramming and whether it involves the disruption of PKM2. METHODS: We used house dust mite (HDM) or interleukin-1ß in C57BL6/NJ WT or mice that lack GSTP. Airway basal cells were stimulated with interleukin-1ß and the selective GSTP inhibitor, TLK199. GSTP and PKM2 were evaluated in sputum samples of asthmatics and healthy controls and incorporated analysis of the U-BIOPRED severe asthma cohort database. RESULTS: Ablation of Gstp decreased total S-glutathionylation and attenuated HDM-induced allergic airways disease and interleukin-1ß-mediated inflammation. Gstp deletion or inhibition by TLK199 decreased the interleukin-1ß-stimulated secretion of pro-inflammatory mediators and lactate by epithelial cells. 13C-glucose metabolomics showed decreased glycolysis flux at the pyruvate kinase step in response to TLK199. GSTP and PKM2 levels were increased in BAL of HDM-exposed mice as well as in sputum of asthmatics compared to controls. Sputum proteomics and transcriptomics revealed strong correlations between GSTP, PKM2, and the glycolysis pathway in asthma. CONCLUSIONS: GSTP contributes to the pathogenesis of allergic airways disease in association with enhanced glycolysis and oxidative disruption of PKM2. Our findings also suggest a PKM2-GSTP-glycolysis signature in asthma that is associated with severe disease.


Asunto(s)
Asma , Proteínas Portadoras/metabolismo , Gutatión-S-Transferasa pi/metabolismo , Proteínas de la Membrana/metabolismo , Piruvato Quinasa , Hormonas Tiroideas/metabolismo , Animales , Proteínas Portadoras/genética , Glutatión/metabolismo , Gutatión-S-Transferasa pi/genética , Glutatión Transferasa , Glucólisis , Humanos , Pulmón/metabolismo , Proteínas de la Membrana/genética , Ratones , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Hormonas Tiroideas/genética , Proteínas de Unión a Hormona Tiroide
5.
Redox Biol ; 43: 101995, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33979767

RESUMEN

Our lungs are exposed daily to airborne pollutants, particulate matter, pathogens as well as lung allergens and irritants. Exposure to these substances can lead to inflammatory responses and may induce endogenous oxidant production, which can cause chronic inflammation, tissue damage and remodeling. Notably, the development of asthma and Chronic Obstructive Pulmonary Disease (COPD) is linked to the aforementioned irritants. Some inhaled foreign chemical compounds are rapidly absorbed and processed by phase I and II enzyme systems critical in the detoxification of xenobiotics including the glutathione-conjugating enzymes Glutathione S-transferases (GSTs). GSTs, and in particular genetic variants of GSTs that alter their activities, have been found to be implicated in the susceptibility to and progression of these lung diseases. Beyond their roles in phase II metabolism, evidence suggests that GSTs are also important mediators of normal lung growth. Therefore, the contribution of GSTs to the development of lung diseases in adults may already start in utero, and continues through infancy, childhood, and adult life. GSTs are also known to scavenge oxidants and affect signaling pathways by protein-protein interaction. Moreover, GSTs regulate reversible oxidative post-translational modifications of proteins, known as protein S-glutathionylation. Therefore, GSTs display an array of functions that impact the pathogenesis of asthma and COPD. In this review we will provide an overview of the specific functions of each class of mammalian cytosolic GSTs. This is followed by a comprehensive analysis of their expression profiles in the lung in healthy subjects, as well as alterations that have been described in (epithelial cells of) asthmatics and COPD patients. Particular emphasis is placed on the emerging evidence of the regulatory properties of GSTs beyond detoxification and their contribution to (un)healthy lungs throughout life. By providing a more thorough understanding, tailored therapeutic strategies can be designed to affect specific functions of particular GSTs.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Animales , Niño , Glutatión , Glutatión Transferasa , Humanos , Pulmón
6.
FASEB J ; 35(5): e21525, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33817836

RESUMEN

Glycolysis is a well-known process by which metabolically active cells, such as tumor or immune cells meet their high metabolic demands. Previously, our laboratory has demonstrated that in airway epithelial cells, the pleiotropic cytokine, interleukin-1 beta (IL1B) induces glycolysis and that this contributes to allergic airway inflammation and remodeling. Activation of glycolysis is known to increase NADPH reducing equivalents generated from the pentose phosphate pathway, linking metabolic reprogramming with redox homeostasis. In addition, numerous glycolytic enzymes are known to be redox regulated. However, whether and how redox chemistry regulates metabolic reprogramming more generally remains unclear. In this study, we employed a multi-omics approach in primary mouse airway basal cells to evaluate the role of protein redox biochemistry, specifically protein glutathionylation, in mediating metabolic reprogramming. Our findings demonstrate that IL1B induces glutathionylation of multiple proteins involved in metabolic regulation, notably in the glycolysis pathway. Cells lacking Glutaredoxin-1 (Glrx), the enzyme responsible for reversing glutathionylation, show modulation of multiple metabolic pathways including an enhanced IL1B-induced glycolytic response. This was accompanied by increased secretion of thymic stromal lymphopoietin (TSLP), a cytokine important in asthma pathogenesis. Targeted inhibition of glycolysis prevented TSLP release, confirming the functional relevance of enhanced glycolysis in cells stimulated with IL1B. Collectively, data herein point to an intriguing link between glutathionylation chemistry and glycolytic reprogramming in epithelial cells and suggest that glutathionylation chemistry may represent a therapeutic target in pulmonary pathologies with perturbations in the glycolysis pathway.


Asunto(s)
Reprogramación Celular , Glutarredoxinas/fisiología , Glutatión/metabolismo , Glucólisis , Inflamación/inmunología , Interleucina-1beta/farmacología , Pulmón/inmunología , Animales , Citocinas/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Metaboloma , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción
7.
Am J Respir Cell Mol Biol ; 64(6): 709-721, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33662229

RESUMEN

Obesity is a risk factor for the development of asthma and represents a difficult-to-treat disease phenotype. Aerobic glycolysis is emerging as a key feature of asthma, and changes in glucose metabolism are linked to leukocyte activation and adaptation to oxidative stress. Dysregulation of PKM2 (pyruvate kinase M2), the enzyme that catalyzes the last step of glycolysis, contributes to house dust mite (HDM)-induced airway inflammation and remodeling in lean mice. It remains unclear whether glycolytic reprogramming and dysregulation of PKM2 also contribute to obese asthma. The goal of the present study was to elucidate the functional role of PKM2 in a murine model of obese allergic asthma. We evaluated the small molecule activator of PKM2, TEPP46, and assessed the role of PKM2 using conditional ablation of the Pkm2 allele from airway epithelial cells. In obese C57BL/6NJ mice, parameters indicative of glycolytic reprogramming remained unchanged in the absence of stimulation with HDM. Obese mice that were subjected to HDM showed evidence of glycolytic reprogramming, and treatment with TEPP46 diminished airway inflammation, whereas parameters of airway remodeling were unaffected. Epithelial ablation of Pkm2 decreased central airway resistance in both lean and obese allergic mice in addition to decreasing inflammatory cytokines in the lung tissue. Lastly, we highlight a novel role for PKM2 in the regulation of glutathione-dependent protein oxidation in the lung tissue of obese allergic mice via a putative IFN-γ-glutaredoxin1 pathway. Overall, targeting metabolism and protein oxidation may be a novel treatment strategy for obese allergic asthma.


Asunto(s)
Asma/enzimología , Asma/patología , Hipersensibilidad/enzimología , Hipersensibilidad/patología , Inflamación/enzimología , Inflamación/patología , Piruvato Quinasa/metabolismo , Animales , Asma/complicaciones , Asma/parasitología , Hiperreactividad Bronquial/complicaciones , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Glutatión/metabolismo , Glucólisis , Homeostasis/efectos de los fármacos , Hipersensibilidad/complicaciones , Hipersensibilidad/parasitología , Mediadores de Inflamación/metabolismo , Pulmón/enzimología , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Obesos , Modelos Biológicos , Piridazinas/administración & dosificación , Piridazinas/farmacología , Pyroglyphidae , Pirroles/administración & dosificación , Pirroles/farmacología
8.
JCI Insight ; 6(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33301419

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease characterized by small airway remodeling and alveolar emphysema due to environmental stresses such as cigarette smoking (CS). Oxidative stress is commonly implicated in COPD pathology, but recent findings suggest that one oxidant-producing NADPH oxidase homolog, dual oxidase 1 (DUOX1), is downregulated in the airways of patients with COPD. We evaluated lung tissue sections from patients with COPD for small airway epithelial DUOX1 protein expression, in association with measures of lung function and small airway and alveolar remodeling. We also addressed the impact of DUOX1 for lung tissue remodeling in mouse models of COPD. Small airway DUOX1 levels were decreased in advanced COPD and correlated with loss of lung function and markers of emphysema and remodeling. Similarly, DUOX1 downregulation in correlation with extracellular matrix remodeling was observed in a genetic model of COPD, transgenic SPC-TNF-α mice. Finally, development of subepithelial airway fibrosis in mice due to exposure to the CS-component acrolein, or alveolar emphysema induced by administration of elastase, were in both cases exacerbated in Duox1-deficient mice. Collectively, our studies highlight that downregulation of DUOX1 may be a contributing feature of COPD pathogenesis, likely related to impaired DUOX1-mediated innate injury responses involved in epithelial homeostasis.


Asunto(s)
Oxidasas Duales/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Anciano , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Regulación hacia Abajo , Oxidasas Duales/genética , Matriz Extracelular/patología , Matriz Extracelular/fisiología , Femenino , Humanos , Pulmón/patología , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mucosa Respiratoria/patología , Mucosa Respiratoria/fisiopatología
9.
J Immunol ; 204(4): 763-774, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31924651

RESUMEN

Asthma is a chronic disorder characterized by inflammation, mucus metaplasia, airway remodeling, and hyperresponsiveness. We recently showed that IL-1-induced glycolytic reprogramming contributes to allergic airway disease using a murine house dust mite model. Moreover, levels of pyruvate kinase M2 (PKM2) were increased in this model as well as in nasal epithelial cells from asthmatics as compared with healthy controls. Although the tetramer form of PKM2 converts phosphoenolpyruvate to pyruvate, the dimeric form of PKM2 has alternative, nonglycolysis functions as a transcriptional coactivator to enhance the transcription of several proinflammatory cytokines. In the current study, we examined the impact of PKM2 on the pathogenesis of house dust mite-induced allergic airways disease in C57BL/6NJ mice. We report, in this study, that activation of PKM2, using the small molecule activator, TEPP46, augmented PKM activity in lung tissues and attenuated airway eosinophils, mucus metaplasia, and subepithelial collagen. TEPP46 attenuated IL-1ß-mediated airway inflammation and expression of proinflammatory mediators. Exposure to TEPP46 strongly decreased the IL-1ß-mediated increases in thymic stromal lymphopoietin (TSLP) and GM-CSF in primary tracheal epithelial cells isolated from C57BL/6NJ mice. We also demonstrate that IL-1ß-mediated increases in nuclear phospho-STAT3 were decreased by TEPP46. Finally, STAT3 inhibition attenuated the IL-1ß-induced release of TSLP and GM-CSF, suggesting that the ability of PKM2 to phosphorylate STAT3 contributes to its proinflammatory function. Collectively, these results demonstrate that the glycolysis-inactive form of PKM2 plays a crucial role in the pathogenesis of allergic airways disease by increasing IL-1ß-induced proinflammatory signaling, in part, through phosphorylation of STAT3.


Asunto(s)
Asma/inmunología , Hipersensibilidad/inmunología , Neumonía/inmunología , Piruvato Quinasa/inmunología , Transducción de Señal/inmunología , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Animales , Asma/metabolismo , Femenino , Hipersensibilidad/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neumonía/metabolismo , Pyroglyphidae/inmunología , Piruvato Quinasa/metabolismo
10.
Am J Physiol Cell Physiol ; 318(2): C304-C327, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31693398

RESUMEN

Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.


Asunto(s)
Glutarredoxinas/metabolismo , Glutatión/metabolismo , Enfermedades Pulmonares/metabolismo , Pulmón/metabolismo , Secuencia de Aminoácidos , Animales , Antioxidantes/metabolismo , Cisteína/metabolismo , Disulfuros/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Oxidación-Reducción , Estrés Oxidativo/fisiología
11.
Antioxid Redox Signal ; 31(14): 1070-1091, 2019 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-30799628

RESUMEN

Significance: The lung is a unique organ, as it is constantly exposed to air, and thus it requires a robust antioxidant defense system to prevent the potential damage from exposure to an array of environmental insults, including oxidants. The peroxiredoxin (PRDX) family plays an important role in scavenging peroxides and is critical to the cellular antioxidant defense system. Recent Advances: Exciting discoveries have been made to highlight the key features of PRDXs that regulate the redox tone. PRDXs do not act in isolation as they require the thioredoxin/thioredoxin reductase/NADPH, sulfiredoxin (SRXN1) redox system, and in some cases glutaredoxin/glutathione, for their reduction. Furthermore, the chaperone function of PRDXs, controlled by the oxidation state, demonstrates the versatility in redox regulation and control of cellular biology exerted by this class of proteins. Critical Issues: Despite the long-known observations that redox perturbations accompany a number of pulmonary diseases, surprisingly little is known about the role of PRDXs in the etiology of these diseases. In this perspective, we review the studies that have been conducted thus far to address the roles of PRDXs in lung disease, or experimental models used to study these diseases. Intriguing findings, such as the secretion of PRDXs and the formation of autoantibodies, raise a number of questions about the pathways that regulate secretion, redox status, and immune response to PRDXs. Future Directions: Further understanding of the mechanisms by which individual PRDXs control lung inflammation, injury, repair, chronic remodeling, and cancer, and the importance of PRDX oxidation state, configuration, and client proteins that govern these processes is needed.


Asunto(s)
Enfermedades Pulmonares/metabolismo , Pulmón/metabolismo , Peroxirredoxinas/metabolismo , Animales , Humanos , Oxidación-Reducción
12.
J Allergy Clin Immunol ; 142(2): 435-450.e10, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29108965

RESUMEN

BACKGROUND: Emerging studies suggest that enhanced glycolysis accompanies inflammatory responses. Virtually nothing is known about the relevance of glycolysis in patients with allergic asthma. OBJECTIVES: We sought to determine whether glycolysis is altered in patients with allergic asthma and to address its importance in the pathogenesis of allergic asthma. METHODS: We examined alterations in glycolysis in sputum samples from asthmatic patients and primary human nasal cells and used murine models of allergic asthma, as well as primary mouse tracheal epithelial cells, to evaluate the relevance of glycolysis. RESULTS: In a murine model of allergic asthma, glycolysis was induced in the lungs in an IL-1-dependent manner. Furthermore, administration of IL-1ß into the airways stimulated lactate production and expression of glycolytic enzymes, with notable expression of lactate dehydrogenase A occurring in the airway epithelium. Indeed, exposure of mouse tracheal epithelial cells to IL-1ß or IL-1α resulted in increased glycolytic flux, glucose use, expression of glycolysis genes, and lactate production. Enhanced glycolysis was required for IL-1ß- or IL-1α-mediated proinflammatory responses and the stimulatory effects of IL-1ß on house dust mite (HDM)-induced release of thymic stromal lymphopoietin and GM-CSF from tracheal epithelial cells. Inhibitor of κB kinase ε was downstream of HDM or IL-1ß and required for HDM-induced glycolysis and pathogenesis of allergic airways disease. Small interfering RNA ablation of lactate dehydrogenase A attenuated HDM-induced increases in lactate levels and attenuated HDM-induced disease. Primary nasal epithelial cells from asthmatic patients intrinsically produced more lactate compared with cells from healthy subjects. Lactate content was significantly higher in sputum supernatants from asthmatic patients, notably those with greater than 61% neutrophils. A positive correlation was observed between sputum lactate and IL-1ß levels, and lactate content correlated negatively with lung function. CONCLUSIONS: Collectively, these findings demonstrate that IL-1ß/inhibitory κB kinase ε signaling plays an important role in HDM-induced glycolysis and pathogenesis of allergic airways disease.


Asunto(s)
Asma/metabolismo , Hipersensibilidad/metabolismo , Interleucina-1beta/metabolismo , Pulmón/metabolismo , Nariz/patología , Mucosa Respiratoria/metabolismo , Esputo/metabolismo , Animales , Antígenos Dermatofagoides/inmunología , Células Cultivadas , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Glucólisis , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-1beta/genética , Ácido Láctico/metabolismo , Pulmón/patología , Masculino , Ratones , Persona de Mediana Edad , Neutrófilos/patología , Proteínas Proto-Oncogénicas/metabolismo , Pyroglyphidae , ARN Interferente Pequeño/genética , Mucosa Respiratoria/patología , Transducción de Señal
13.
Am J Respir Cell Mol Biol ; 56(3): 393-401, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27875656

RESUMEN

Lung tissue remodeling in chronic obstructive pulmonary disease (COPD) is characterized by airway wall thickening and/or emphysema. Although the bronchial and alveolar compartments are functionally independent entities, we recently showed comparable alterations in matrix composition comprised of decreased elastin content and increased collagen and hyaluronan contents of alveolar and small airway walls. Out of several animal models tested, surfactant protein C (SPC)-TNF-α mice showed remodeling in alveolar and airway walls similar to what we observed in patients with COPD. Epithelial cells are able to undergo a phenotypic shift, gaining mesenchymal properties, a process in which c-Jun N-terminal kinase (JNK) signaling is involved. Therefore, we hypothesized that TNF-α induces JNK-dependent epithelial plasticity, which contributes to lung matrix remodeling. To this end, the ability of TNF-α to induce a phenotypic shift was assessed in A549, BEAS2B, and primary bronchial epithelial cells, and phenotypic markers were studied in SPC-TNF-α mice. Phenotypic markers of mesenchymal cells were elevated both in vitro and in vivo, as shown by the expression of vimentin, plasminogen activator inhibitor-1, collagen, and matrix metalloproteinases. Concurrently, the expression of the epithelial markers, E-cadherin and keratin 7 and 18, was attenuated. A pharmacological inhibitor of JNK attenuated this phenotypic shift in vitro, demonstrating involvement of JNK signaling in this process. Interestingly, activation of JNK signaling was also clearly present in lungs of SPC-TNF-α mice and patients with COPD. Together, these data show a role for TNF-α in the induction of a phenotypic shift in vitro, resulting in increased collagen production and the expression of elastin-degrading matrix metalloproteinases, and provide evidence for involvement of the TNF-α-JNK axis in extracellular matrix remodeling.


Asunto(s)
Matriz Extracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Biomarcadores/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Matriz Extracelular/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Mesodermo/metabolismo , Ratones , Fenotipo , Fosforilación/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...